LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration
نویسندگان
چکیده
The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1(Atoh1) CKO) to investigate the function of LKB1 in cerebellar development. The LKB1(Atoh1) CKO mice displayed motor dysfunction. In the LKB1(Atoh1) CKO cerebellum, the overall structure had a larger volume and more lobules. LKB1 inactivation led to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1(Atoh1) CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development.
منابع مشابه
Cerebellar proteoglycans regulate sonic hedgehog responses during development.
Sonic hedgehog promotes proliferation of developing cerebellar granule cells. As sonic hedgehog is expressed in the cerebellum throughout life it is not clear why proliferation occurs only in the early postnatal period and only in the external granule cell layer. We asked whether heparan sulfate proteoglycans might regulate sonic hedgehog-induced proliferation and thereby contribute to the spec...
متن کاملBmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling.
During development of the cerebellum, sonic hedgehog (Shh) is directly responsible for the proliferation of granule cell precursors in the external germinal layer. We have looked for signals able to regulate a switch from the Shh-mediated proliferative response to one that directs differentiation of granule neurones. Bone morphogenetic proteins (BMPs) are expressed in distinct neuronal populati...
متن کاملPurkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum
Purkinje cells (PCs) are the projection neurons of the cerebellar cortex. They receive two major types of synaptic input - that from the inferior olive via climbing fibres and that from the granule neurons via parallel fibres. The precursors of granule neurons proliferate at the surface of the developing cerebellumin the external granule layer (EGL), which persists until postnatal day 14 in the...
متن کاملVitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation.
During development of the cerebellum, Sonic hedgehog (SHH) is expressed in migrating and settled Purkinje neurons and is directly responsible for proliferation of granule cell precursors in the external germinal layer. We have previously demonstrated that SHH interacts with vitronectin in the differentiation of spinal motor neurons. Here, we analysed whether similar interactions between SHH and...
متن کاملCritical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development.
Integrin-linked kinase (ILK) is a serine/threonine protein kinase that plays an important role in integrin signaling and cell proliferation. We used Cre recombinase (Cre)-loxP technology to study CNS restricted knock-out of the ilk gene by either Nestin-driven or gfap-driven Cre-mediated recombination. Developmental changes in ilk-excised brain regions are similar to those observed in mice lack...
متن کامل